عملکرد و کیفیت علوفه و بهره‌وری مصرف آب کوشیا، ارزن، سورگوم و ذرت در شرایط تنش کم آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان

2 بخش تحقیقات فنی و مهندسی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان

3 بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان

چکیده

به منظور ارزیابی عملکرد و کیفیت علوفه و بهره‌وری مصرف آب هار گیاه علوفه‌ای کوشیا (Kochia scoparia L. Schrad)، ارزن مرواریدی (Pennisetum glaucum L.)، سورگوم (Sorghum bicolor L. Moench) و ذرت علوفه‌ای(Zea mays L.) در شرایط تنش کم آبی، آزمایشی به‌صورت‌ کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار در دو سال (1396-1395) در ایستگاه تحقیقات کشاورزی جوپار کرمان انجام شد. سطوح آبیاری در کرت‌های اصلی شامل آبیاری کامل (بدون تنش)، تنش ملایم و تنش شدید به ترتیب بر اساس 80، 130 و 180 میلی‌متر تبخیر تجمعی از تشتک تبخیر کلاس A و چهار گیاه علوفه‌ای شامل کوشیا، ارزن مرواریدی، سورگوم و ذرت در کرت‌های فرعی قرار گرفتند. سورگوم در کلیه سطوح تنش خشکی بیشترین عملکرد علوفه را در مقایسه با سه گیاه دیگر تولید نمود. این گیاه در شرایط آبیاری کامل با تولید 101241 کیلوگرم علوفه تر و 30181 کیلوگرم علوفه خشک در هکتار بیشترین عملکرد علوفه را داشت. با افزایش تنش خشکی کاهش عملکرد در کوشیا نسبت به سایر گیاهان کمتر بود. بیشترین بهره‌وری مصرف آب در شرایط تنش ملایم به دست آمد. بیشترین بهره‌وری مصرف آب در تیمارهای آبیاری بهینه، تنش ملایم و تنش شدید به ترتیب با مقادیر17/3 ، 97/2 و 8/2 کیلوگرم علوفه خشک بر متر مکعب آب به سورگوم تعلق داشت. ارزن با 89/11 درصد پروتئین خام بیشترین و سورگوم با 19/8 درصد کمترین پروتئین خام علوفه را داشتند. بر اساس نتایج این پژوهش سورگوم دارای بیشترین عملکرد علوفه و بهره‌وری مصرف آب و کوشیا به عنوان متحمل‌ترین علوفه به تنش خشکی بود. با توجه به اهمیت کمیت و کیفیت علوفه برای پرورش دام تحقیق بر روی کشت مخلوط سورگوم با ارزن پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Forage Yield and Quality and Water Productivity of Kochia, Millet, Sorghum and Maize Under Water Deficit Stress Conditions

نویسندگان [English]

  • Hamid Najafinezhad 1
  • Mohammad Ali Javaheri 1
  • Nader Koohi 2
  • Pirouz Shakeri 3
1 Agricultural and Horticultural Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
2 Agricultural engineering Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
3 Animal Science Research Department , Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
چکیده [English]

To evaluate forage yield and quality as well as water productivity of kochia (Kochia scoparia L. Schrad), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) under water deficit stress conditions, a field experiment was carried-out as split plot arrangements in randomized complete block design with four replications in two years (2016-2017) in Kerman, Iran. Three irrigation regimes including; optimal irrigation, mild and severe stress levels based on 80, 130 and 180 mm cumulative pan evaporation, respectively, were assigned to main plots and four plant species; kochia, millet, sorghum and maize were randomized in subplots. Sorghum had the highest forage yield in all irrigation regimes. Sorghum in optimal irrigation had 101241 kg ha-1 of fresh forage and 30181 kg ha-1 dry forage. With increasing drought stress severity, yield reduction was lower in kochia than other plant species. The highest water productivity obtained under mild drought stress. The highest water productivity in optimal, mild and severe drought stress levels belonged to sorghum with 3.17, 2.97 and 2.8 kg m-3, respectively. Millet had the highest (11.8%) and sorghum the lowest (8.9%) crude protein in dry forage. Based on the results of this research, sorghum had the highest forage yield and water productivity, and kochia was the most tolerant plant for drought stress conditions. Considering the importance of quantity and quality of forage for livestocks, it is suggested that intercropping of sorghum and millet will be considered as a research priority in future.

کلیدواژه‌ها [English]

  • Dry forage
  • crude protein
  • drought tolerance
  • mild stress
  • potassium
Abdi, M., and Mahmoud, H. 2017. Effect of water stress on quality and quantity of two cultivars of forage sorghum in Jiroft region. Journal of Crop Ecology 13 (3): 40-35 (in Persian).
 
AOAC. 1990. Association of official analytical chemists, Washington DC. 15th ed. 1132 pp.
 
Bernard, J. K., West, J. W., Trammell, D. S., and Cross, G. H. 2004. Influence of corn variety and cutting height on nutritive value of silage feed to lactating dairy cows. Journal of Dairy Science 87: 2172-2176.
 
Bordovsky, J. P., and Lyle, W. M. 1996. Protocol for planned soil water depletion or irrigated cotton. pp. 201-206. In: Proceedings of the International Conference on Evapotranspiration and Irrigation Scheduling. San Antonio, TX.
 
Branka, K., Bosko, G., Angelina, T., and Goran, D. 2018. How irrigation water affects the yield and nutritional quality of maize (Zea mays L.) in a temperate climate. Polish Journal of Environmental Studies 27 (3): 1123–1131.
 
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. 2008. Plant drought stress: effects, mechanisms and management. Agronomy of Sustainable Development 29: 185-212.
 
Farre, I., and Faci, J. M. 2006. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agricultural Water Management 83: 135-143.
 
Fontaneli, R. S., Sollenberger, L. E., and Staples, Ch. R. 2001. Yield distribution and nutritive value of intensively managed warm- season unnual grasses. Agronomy Journal 93: 1257-1262.
 
Fotouhi, K., Ahmdaly J., Noorjo A., Pedram A., and Khorshid, A. 2009. Irrigation management under water discharge permit at the different stages of sugar beet grown in Miandoab region. Journal of Sugar Beet 24: 43–60 (in Persian).
 
Gusta, L. V., and Chen, T. H.. 1987. The physiology of water and temperature stress. pp. 115-150. In: Heyne, E. G. (ed.) wheat and wheat improvement. American Society of Agronomy. Horrocks, R. D., and Vallentine, J. F. 1999. Harvested forages. Academic Press, San Diego, CA. 426 pp.
 
House, L. R. 1985. A guide to sorghum breeding. International Crops Research Institute for Semiarids Tropics. Patancheru, India. 220 pp.
 
Howell, T. A. 2001. Enhancing water use efficiency in irrigated agriculture. Agronomy Journal 93:281-289.
 
Kafi, M., Asadi, H., and Ganjeali, A.. 2010. Possible utilization of high salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as lternative fodder in saline agroecosystems. Agricultural Water Management. 97: 139-147.
 
Kamara, A. Y., Menkir, A., Badu-apraku, B., and Ibikunle, O. 2003. The influence of drought stress on growth, yield and yield components of selected maize genotypes. Journal of Agricultural Science 141: 43-50.
 
Khadem, S. A., Galavi, M., Ramrodi, M., Mousavi, S. R., Rousta, M. J., and Moghadam, M. R. 2010. Effect of animal manure and superabsorbent polymer on corn leaf relative water content, cell membrane stability and leaf chlorophyll content under dry condition. Australian Journal of Crop Science 4 (8):642-647.
 
Khalesroo S., Aghaalikhani. M., Moddares Sanavy. S. A. M. 2010. Effect of nitrogen fertilizer on yield and quality of forage maize, pearl millet and sorghum in double-cropping system. Iranian Journal of Field Crops Research 7: 930–938 (in Persian).
 
Lieth, H., and Lohmann, M. 2000. Cash crop halophytes for future halophyte growers. Institute of Environmental Systems Research, University of Osnabrück. 16 pp.
 
Ludlow, M. M., Santamaria, J. M., and Fukai, S. 1990. Contribution of osmotic adjustment to grain yield in sorghum (Sorghum bicolor L. Moench) under water - limited conditions. Water stress after anthesis. Australian Journal of Agricultural Research 40: 67-78.
 
Masoumi, A. 2010. Effect of drought stress on morphophysiological parameters of Kochia scoparia in field and greenhouse conditions. Ph. D. Thesis. Ferdowsi University of Mashhad. 127 pp.
 
Mirlouhi, A., Great, N., and Basiri, M. 2001. Effect of different levels of nitrogen on growth, yield and silage quality of three forage sorghum hybrids. Journal of Agricultural Science and Technology. 4 (2): 115-105 (in Persian).
 
Modeer Shanechee, M. 2001. Production and management of forage plants. Publication of Astan Qods Razavi. 430 pp (in Persian).
 
Montgomery, R. 2009. Influence of corn hybrids and water stress on yield and nutritive value. M. Sc. Thesis. Texas Technical University. 46 pp.
 
Musick, J. T., and Dusek, D. A. 1971. Grain sorghum response to number, timing, and size of irrigation in the southern High Plains. Transactions, ASAE. 14: 401-410.
 
Najafinezhad, H., Tahmasebi Sarvestani, Z., Modares Sanavy, S. A. M., and Naghavi, H. 2014. Effects of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield and water use efficiency of maize and sorghum in double cropping. Seed and Plant Production Journal 30 (3): 327-349 (in Persian).
 
Salehi, M. 2010. Effect of salinity and water deficit on quantitative and qualitative production and physiological characteristics of Kochia scoparia. PhD Thesis. Ferdowsi University of Mashhad. 189 pp. (in Persian).
 
Shao, H. B., Chu, L. Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R., and Shao, M. A. 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the globe. Critical Reviews in Biotechnology 29: 131-151.
 
Singh, B. R., and Singh, D. P. 1995. Agronomic and physiological responses of sorghum, maize and pearl millet to irrigation. Field Crops Research 42: 57- 67.
 
Sparks, D. L. 1996. Methods of soil analysis. pp. 417-436. In: Part 3 - Chemical methods. Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA, Madison WI.
 
Taiz, L., and Zeiger, E. 1998. Plant Physiology. Second Edition. Sinauer Associates: Sunderland, Massachusetts. 792 pp.
 
Tanguilig,V. C., Yambao, E. B., Toole, J. C. O., and DeDatta, S. K. 1987. Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize, and soybean. Plant and Soil 103: 155, 1987.
 
Tolk, J. A., and Howell, T. A. 2003. Water use efficiency of grain sorghum grown in three USA southern Great Plains soils. Agricultural Water Management. 59:97-111.
 
Van-Soest, P. J., Robertson, J. B., and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science.74:3583-3597.
 
Waghorn, G. C., Burke, J. L. and Kolver, E. S. 2007. Principles of feeding value. Pp.35-59. In: Rattray, P. V., Brookes, I. M., Nicol, A. M. (eds.) pastures and supplements for grazing animals. Occasional publication No. 14. New Zealand Society of Animal Production. Hamilton, New Zealand.
 
Ward, J. D., Redfearn, D. D., Mccormik , M. E., and Guomo, G. J. 2001. Chemical composition, ensiling characteristics, and apparent digestibility of summer anuual forages in a subtropical double – cropping system with annual ryegrass. Journal of Dairy Science 84: 177-182.
 
Wilson, J. R. 1983. Effects of water stress on in vitro dry matter digestibility and chemical composition of herbage of tropical pasture species. Australian Journal of Agricultural Research 34:377-390.