پاسخ عملکرد و کیفیت روغن دانه ژنوتیپ‌های کنجد بومی ایران به تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اکولوژی گیاهان زراعی دانشگاه محقق اردبیلی (UMA) و مربی پژوهش مؤسسه تحقیقات اصلاح و تهیه نهال و بذر (SPII)، سازمان تحقیقات،

2 دانشیار گروه زراعت و اصلاح نباتات دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی (UMA)،

3 دانشیار پژوهشکده بیوتکنولوژی کشاورزی ایران (ABRII)، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)،

4 دانشیار مؤسسه تحقیقات فنی و مهندسی کشاورزی (AERI)، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)

چکیده

تنش خشکی از عوامل محیطی مهمی است که بر عملکرد و کیفیت محصول کنجد تاثیر می‌گذارد. در این راستا هشت ژنوتیپ کنجد به همراه ارقام اولتان و داراب1 در شرایط عادی و تنش خشکی در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال‌های 1393 و 1394، در مزرعه تحقیقاتی مؤسسه تحقیقات اصلاح و تهیه نهال و بذر در کرج، از نظر عملکرد دانه و ویژگی‌های بیوشیمیایی روغن ارزیابی شدند. خشکی باعث کاهش 1/45 درصد عملکرد دانه، 5/2 درصد روغن دانه، و 24 درصد اسید چرب پالمیتولئیک، و افزایش 4/99 درصد قدرت آنتی اکسیدانی روغن، 9/18 درصد لیگنان‌های روغن و 6/15 درصد پروتئین خام دانه شد. در واقع خشکی باعث بهبود کیفیت روغن گردید. ژنوتیپ KC50662 در هر دو شرایط، عملکرد مناسبی داشت و همچنین 3/5 درصد روغن آن بیش از شاهد اولتان بود و کمترین میزان اسید چرب مضر پالمیتیک (5/8 درصد) بعد از رقم اولتان (2/8 درصد) و ژنوتیپ KC50687 را داشت. همچنین مقادیر بیشتر اسیدهای چرب مفید اولئیک (1/47 درصد) و پالمیتولئیک (094/0 درصد) نسبت به شاهد (به ترتیب 1/43 و 072/0 درصد) داشت. این ژنوتیپ دارای میزان پائین‌تر اسید چرب اشباع استئاریک (7 /4 درصد)، میزان بالاتر اسید چرب مفید لینولئیک (42 درصد) نسبت به شاهد (به ترتیب 4/5 و 7/38 درصد) و مقدار بالاتر کل لیگنان‌های روغن (4237 میلی‌گرم در کیلوگرم) و قدرت آنتی‌اکسیدانی 5/23 میکرومول در لیتر پایین‌تر نسبت به شاهد (به ترتیب 3541 میلی‌گرم در کیلوگرم و 9/33 میکرومول در لیتر) بود. شاخص‌های تحمل و حساسیت ژنوتیپKC50662 را با پتانسیل عملکرد بالا و ژنوتیپ‌های KC50658، KC50687 و KC50983 را به عنوان متحمل شناسایی کردند. ژنوتیپ KC50662 با توجه به عملکرد بالا در دو شرایط عادی و تنش و خصوصیات مطلوب کیفیت روغن به عنوان ژنوتیپ برتر شناسایی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Response of Seed Yield and Oil Quality of Iranian Native Sesame Genotypes to Drought Stress

نویسندگان [English]

  • Mohammad Abbasali 1
  • Abdoulghayom Gholipouri 2
  • Ahmad Tobeh 2
  • Nayer Azam KhoshKholgh Sima 3
  • Behjat Tajeddin 4
1 Ph.D. Student of Agro-ecology, Faculty of Agricultural and Natural Resources, Mohghegh Ardabili University (UMA) and Research Instructor of Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension
2 Associate Professor, Department of Agronomy & Plant Breeding, Faculty of Agricultural and Natural Resources, Mohghegh Ardabili University (UMA), Iran
3 Associate Professor, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Iran
4 Associate Professor, Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), Iran
چکیده [English]

Eight sesame genotypes along with Oltan and Darab1 cultivars were evaluated for seed yield and oil biochemical traits using randomized complete block design with there replications under normal and drought stress conditions in Karaj, Iran, in 2014 and 2015. Drought reduced seed yield by 45.1 %, oil content by 2.5%, palmitoleic fatty acid by 24.0%, and increased the antioxidant power of oil by 99.4%, total lignin of oil by 18.9 and seed crude protein by 15.6%. In fact, drought stress had a beneficial effect on seed oil quality. Genotype KC50662 had reasonable yield under two conditions. In addition, its seed oil content was 5.3% higher than cv. Oltan. This genotype had the lowest amount of harmful palmitic fatty acid (8.5%) second next to Oltan cultivar (8.2%). This genotype had more beneficial oleic (47.1%) and palmitoleic (0.09%) fatty acids compared to cv. Oltan (43.1% and 0.07%, respectively). This genotype also had lower level of stearic acid (4.7%), higher level of linoleic acid (42.0%), higher level of lignans (4237 mg kg-1), and lower level of antioxidants power (23.5 µmol L-1) compared to cv. Oltan (5.4%, 38.7%, 3541mg kg-1, and 33.9 µmol L-1, respectively). Tolerance and susceptibility indices could identify genotype KC 50662 as high yielding, and KC 50658, KC 50687 and KC 50983 as tolerant genotypes. In conclusion, genotype KC50662 was identified as superior genotype with high seed yield, in both normal and stress conditions, and oil quality properties.

کلیدواژه‌ها [English]

  • Sesame
  • abiotic stress
  • tolerance
  • seed yield
  • saturated fatty acid
Amani, M., Golkar, P., and Mohammadi-Nejad, G. 2012. Evaluation of drought tolerance in different genotypes of sesame (Sesamum indicum L.). International Journal of Recent Scientific Research 3 (4): 226-230.
 
Ayoubizadeh, N., Laei, G., Dehaghi, A. M., Sinaki, M. J. and Rezvan, S. 2018. Seed yield and fatty acids composition of sesame genotypes as affected by foliar application of iron nano-chelate and fulvic acid under drought stress. Applied Ecology and Environmental Research 16 (6): 7585-7604.
 
Awasthi, R., Kaushal, N., Vadez, V., Turner, N. C., Berger, J., Siddique, K. H., and Nayyar, H. 2014. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology 41 (11): 1148-1167.
 
Benzie, I. F., and Strain J. J. 1999. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology 299: 15-27.
 
Bhatnagar, A. S., Hemavathy J., and Gopala Krishna A. G. 2015. Development of a rapid method for determination of lignans content in sesame oil. Journal of Food Science and Technology 52 (1): 521-527.
 
Boureima, S., Diouf, S., Amoukou, M., and Van Damme, P. 2016. Screening for sources of tolerance to drought in sesame induced mutants: Assessment of indirect selection criteria for seed yield. International Journal of Pure and Applied Bioscience 4 (1): 45-60.
 
Carlsson, A. S., Chanana, N. P., Gudu, S., Suh, M. C., and Were, B. A. I., 2009. Sesame. Compendium of Transgenic Crop Plants: 227-246.
 
El Naim, A. M., and Ahmed, M. F. 2010. Effect of irrigation on vegetative growth, oil yield and protein content of two sesame (Sesamum indicum L.) cultivars. Research Journal of Agriculture and Biological Sciences 6 (5): 630-636.
 
FAO, 2018. http://www.fao.org/faostat/en/#data
 
FAO and WHO. 2001. Codex Alimentarius: General requirements (food hygiene) (Vol. 1). Food & Agriculture Org.
 
Fernandez, G. C. 1992. Effective selection criteria for assessing plant stress tolerance. pp. 257-270. In: Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water stress.
 
Fischer, R. A., and Maurer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Crop and Pasture Science 29 (5): 897-912.
 
Hamrouni, I., Salah, H. B., and Marzouk, B. 2001. Effects of water-deficit on lipids of safflower aerial parts. Phytochemistry 58 (2): 277-280.
 
Hassanzadeh, M., Ebadi, A., Panahyan-e-Kivi, M., Jamaati-e-Somarin, S., Saeidi, M., and Gholipouri, A. 2009. Investigation of water stress on yield and yield components of sesame (Sesamum indicum L.) in Moghan region. Research Journal of Environmental Sciences 3 (2): 239-244.
 
Hassanzadeh, N., Kazemi Tabar, S. K., Asouri, M., Hashemlou, F., and Ahmadi, A. A. 2014. The evaluation of antioxidant properties of native sesame varieties of Iran. Official Journal of Iranian Association of Clinical Laboratory Doctors. Laboratory & Diagnosis Vol. 5, No 22.
 
Hussein, Y., Amin, G., Azab, A., and Gahin, H. 2015. Induction of drought stress resistance in sesame (Sesamum indicum L.) plant by salicylic acid and kinetin. Journal of Plant Sciences 10 (4): 128.
 
Hwang, L. S. 2005. Sesame oil. Bailey's Industrial Oil and Fat Products 2: 547-552.
 
ISO 12966-2, 2011. Animal and vegetable fats and oils-gas chromatography of fatty acid methyl esters- Part 2: Preparation of fatty acid methyl esters. International Organization for Standardization.
 
ISO 5511, 1992. Oilseeds- determination of oil content- method using continuous- wave low- resolution nuclear magnetic resonance spectrometry (rapid method). International Organization for Standardization.
 
Kassab, O. M., Mehanna, H. M., and Aboelill, A. 2012. Drought impact on growth and yield of some sesame varieties. Journal of Applied Sciences Research 8 (8): 4544-4551.
 
Khammari, M., Ghanbari, A., and Rostami, H. 2013. Evaluation indicator of drought stress in different cultivars of sesame. International Journal of Management Sciences and Business Research 2 (9): 28.
 
Kim, K. S., Ryu, S. N., and Chung, H. G. 2006. Influence of drought stress on chemical compositon of sesame seed. Korean Journal crop Science 51 (1): 73-80.
 
Kurt, C. 2018. Variation in oil content and fatty acid composition of sesame accessions from different origins. Grasas y Aceites 69 (1): 241.
 
Laribi, B., Bettaieb, I., Kouki, K., Sahli, A., Mougou, A., and Marzouk, B., 2009. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Industrial Crops and Products 30 (3): 372-379.
 
Molaie, P., Ebadi, A., Namvar, A., and Bejandi, T. K. 2012. Water relation, solute accumulation and cell membrane injury in sesame (Sesamum indicum L.) cultivars subjected to water stress. Annals of Biological Research 3 (4): 1833-1838.
 
Moradi, P., Mahdavi, A., Khoshkam, M., and Iriti, M., 2017. Lipidomics unravels the role of leaf lipids in thyme plant response to drought stress. International Journal of Molecular Sciences 18 (10): 2067.
 
Nagendra Prasad, M. N., Sanjay, K. R., Prasad, D. S., Vijay, N., Kothari, R., and Nanjunda Swamy, S. 2012. A review on nutritional and nutraceutical properties of sesame. Journal of Nutrition and Food Sciences 2 (127): 2.
 
Nath, R., Chakraborty, P. K., Bandopadhyay, P., Kundu, C. K., and Chakraborty, A. 2003. Analysis of relationship between crop growth parameters, yield and physical environment within the crop canopy of sesame (Sesamum indicum) at different sowing dates. Archives of Agronomy and Soil Science 49 (6): 677-682.
 
Ozkan, A., and Kulak, M. 2013. Effects of water stress on growth, oil yield, fatty acid composition and mineral content of Sesamum indicum. Journal of Animal and Plant Sciences 23 (6): 1686-90.
 
Poor-Esmaeil, H. A., Fanaei, H. R., and Saberi, M. H. 2014. Evaluation of drought tolerant cultivars and lines of sesame using stress tolerance indices. Scientific Journal of Crop Science 3 (6): 66-70.
 
Rosielle, A. A., and Hamblin, J. 1981. Theoretical aspects of selection for yield in stress and non-stress environment. Crop science 21 (6): 943-946.
 
Sanchez, J., Canales Castilla, F. J., Tweed, J. K., Lee, M. R. F., Rubiales, D., Gómez-Cadenas, A., Arbona, V., Mur, L. A., and Prats, E. 2018. Fatty acid profile changes during gradual soil water depletion in oats suggests a role for jasmonates in coping with drought. Frontiers in Plant Science 1077.
 
Sadeghi, N., Oveisi, M.R., Hajimahmoodi, M., Jannat, B., Mazaheri, M., and Mansouri, S. 2010. The contents of sesamol in Iranian sesame seeds. Iranian Journal of Pharmaceutical Research: 101-105.
 
Schneider, K. A., Rosales-Serna, R., Ibarra-Perez, F., Cazares-Enriquez, B., Acosta-Gallegos, J. A., Ramirez-Vallejo, P., and Kelly, J. D. 1997. Improving common bean performance under drought stress. Crop Science 37 (1): 43-50.
 
Suja, K. P., Jayalekshmy, A., and Arumughan, C. 2004. Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH system. Journal of Agricultural and Food Chemistry 52 (4): 912-915.