ارزیابی برخی از پاسخ‌های مورفو- فیزیولوژیکی ژنوتیپ‌های مرکبات به تنش شوری

نویسندگان

1 دانشجوی سابق دکتری، گروه علوم باغبانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 استاد، گروه علوم باغبانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، پژوهشکده مرکبات و میوه‌های نیمه گرمسیری، مؤسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، رامسر، ایران

4 استاد، گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

به منظور ارزیابی و شناسایی ژنوتیپ‌های متحمل به شوری، برخی از دانهال‌های مرکبات غربال شده نسبت به شوری موجود در کلکسیون مرکز تحقیقات مرکبات رامسر و ایستکاه تحقیقاتی داراب و ژنوتیپ‌های تجاری متحمل (کلئوپاترا ماندارین) و حساس (ترویر سیترنج) در سه سطح، صفر(شاهد)، 40 و 90 میلی‌مولار سدیم کلراید در شرایطگلخانه بررسی شدند. در هفته دوزادهم پس از شروع تنش  صفات سطح برگ، سطح ویژه برگ، رشد طولی و قطری ساقه، ضخامت برگ، وزن تر و خشک اندام هوایی، میزان نکروزه شدن و ریزش برگ‌ها، مقدار آب نسبی برگ، میزان عناصر سدیم، پتاسیم و نسبت پتاسیم به سدیم مورد مطالعه قرار گرفتند. ژنوتیپ‌های مورد بررسی از نظر کلیه صفات به جز سطح ویژه برگ پاسخ متفاوت نشان دادند. تنش شوری کاهش معنی‌داری در سطح برگ، میزان رشد طولی و قطری ساقه، ضخامت برگ، وزن تر و خشک اندام هوایی و مقدار آب نسبی برگ و نیز افزایش معنی‌دار میزان نکروزه شدن و ریزش برگ‌ها و میزان عناصر سدیم و پتاسیم در ژنوتیپ‌های غربال شده ایجاد کرد. بررسی نمره تحمل به تنش (STS) نشان داد دو ژنوتیپ بومی ایران شامل G25 و G8 در کنار ژنوتیپ متحمل کلئوپاترا ماندارین مقاومت به شوری بالایی داشتند. با در نظر گرفتن هم زمان خصوصیات فیزیولوژیک و STS ژنوتیپ‌های G8و کلئوپاترا ماندارین به عنوان بهترین ژتوتیپ‌ها گزینش شدند. بنابراین این ژنوتیپ‌هاپس از بررسی خصوصیات باغی برای استفاده به عنوان پایه در مناطق دارای خاک یا آب شور توصیه می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Some Morpho- Physiological Responses of Citrus Genotypes to Salinity Stress

نویسندگان [English]

  • M. Etahadpour 1
  • mohammad reza Fattahi moghadam 2
  • Z. Zamani 2
  • B. Golein 3
  • M. R. Naghavi 4
1 Ph.D. Graduate, Department of Horticultural Sciences, Agricultural and Natural Resources Campus of University of Tehran, Karaj, Iran
2 Professor, Department of Horticultural Sciences, Agricultural and Natural Resources Campus of University of Tehran, Karaj, Iran
3 Associate Professor, Citrus and Sub- Tropocal Fruit Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization, Ramsar, Iran
4 Professor, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources Campus of University of Tehran, Karaj, Iran
چکیده [English]

To identify salinity tolerant citrus genotypes, two international tolerant (Cleopatra mandarin) and sensitive genotypes (Troyer Citrange), and some screened citrus genotypes for salinity tolerance from citrus research center of Ramsar and Darab research station (total 28 genotypes) were evaluated under glasshouse conditions. Three levels of salinity stress including; zero (control), 40 and 90 Mm sodium chloride were applied on eight months seedlings of citrus genotypes. In 12th week after the application of salinity stress morpho- physiological characteristics including; leaf area, specific leaf area, growth rate, stem diameter, leaf thickness, fresh and dry weight, leaf necrosis and loss, leaf relative water content (RWC), sodium and potassium content, and potassium : sodium ratio were measured and studied. The studied genotypes showed different responses for all traits, except for specific leaf area. Salinity stress caused significant reduction in leaf area, growth rate, stem diameter, leaf thickness, fresh and dry weights and RWC. Furthermore, significant increase of leaf necrosis and loss, and leaf sodium and potassium concentration were observed. Study of stress tolerance score (STS) showed that two Iranian landraces including G25 and G8 and tolerant genotype (Cleopatra) had high salinity tolerance. G8 and Cleopatra were selected as the tolerant genotypes based on physiological traits and STS. In condusion, considering horticultural characteristics, these two genotypes can be recommended as rootstock in areas with saline soil and water.

کلیدواژه‌ها [English]

  • Cleopatra mandarin
  • citrus
  • tolerant genotype
  • stress tolerance score
Abdolshahi, R., Safarian, A., Nazari, M., Pourseyedi, Sh., and Mohamadi-Nejad, Gh. 2013. Screening drought-tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science 59: 685-704.
 
 
Amini, A., Vahabzadeh, M., Majidi Heravan, E., Afiuni, D., Tabatabaei, M. T., Saberi, M. H., Lotfali Aineh, G., and Ravari, S. Z. 2010. Grain yield stability and adaptability of bread wheat genotypes using different stability indices under salinity stress conditions. Seed and Plant Improvment Journal 26: 397-411.
 
 
Anjum, M. A., Abid, M., and Naveed, F. 2001. Evaluation of citrus rootstocks for salinity tolerance at seedling stage. International Journal of Agriculture and Biology 3: 1-4.
 
 
Arias, D. 2007. Calibration of LAI -2000 to estimate leaf area index and assement of its relationship with stand productivity in six native and introduced tree species in Costarica. Forest Ecology and Management 247: 85-193.
 
 
Balal, R. M. 2012. Comparative studies on the physiobiochemical, enzymatic, and ionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. Journal of the American Society for Horticultural Science 137: 86-95.
 
 
Balal, R. M., Ashraf, M. Y., Khan, M. M., Jaskani, M. J., and Ashfaq, M. 2011. Influence of salt stress on growth and biochemical parameters of citrus rootstocks. Pakistan Journal of Botany 43: 2135-2141.
 
 
Banuls, J., Serna, M. D., Legaz, M., and Primo- Millo, E. 1997. Growth and gaz exchange parameters of citrus plants stressed with different salts. Journal of Plant Physiology 150: 194-199.
 
 
Bar, Y., Apelbaum, A., Kafkafi, U., and Goren, R. 1997. Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. Journal of Plant Nutrition 20: 715– 31.
Chapman, H. 1949. Citrus leaf analysis. California Agriculture 3: 10-14.
 
 
Climent, M., Arbona, V., Perez-Clemente, R. M., and Gomez-Cadenas, A. 2008. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany 62: 176-184.
 
 
Dejampour, J., Aliasgarzadeh, N., Grigorian, V., and Majidi Heravan, E. 2012. Evaluation of salinity tolerance in some interspecific hybrids of prunus. Seed and Plant Improvment Journal 28: 339-351.
 
 
Etehadpour, M., Fattahi Moghaddam, M., R., Zamani. Z., Golein, B., and Naghavi, M. R. 2019. Effect of salinity stress on physiological traits of citrus seedlings and identification of superior genotypes. Iranian Journal of Horticultural Science In press.
 
 
Fadli, A., Chetto, O., Talha, A., Beniken, L., Benkirane, R., and Benyahla, H. 2012. Screening of ten citrus rootstocks for salt tolerance at seedling stage. Pp. 123. In: Proceedings of the XII International Citrus Congress.
 
 
Ferguson, L., and Gratten, S. R. 2005. How salinity damages citrus: osmotic effects and specific ion toxicities. HortTechnology 15: 95-99.
 
 
Garcia – Sanchez, F., Carvajal, M., Porras, I., Botina, P., and Martinez, V. 2003. Effects of salinity and rate of irrigation on yield, fruit quality and mineral composition of ‘Fino 49’ Lemon. European Journal of Agronomy 19: 427-437.
 
 
Garcia-Sanchez, F., Martinez, V., Jifon, J. L., Syvertsen, J. P., and Grosser, J. W. 2002b. Salinity reduces growth, gas exchange, chlorophyll and nutrient concentrations indiploid sour orange and related allotetraploid somatic hybrids. Journal of Horticultural Science and Biotechnology 77: 379-386.
 
 
Gomez-Cadenas, A., Tadeo, F. R., Primo-Millo, E., and Talon, M. 1998. Involvement of abscicic acid and ethylene in the response of citrus seedlings to salt shock. Physiologia Plantarum 103: 475-484.
 
 
Gonzalez, L., and Gonzalez- Vilar, M. 2001. Determination of relative water content. Pp. 207-212. In: Reigosa Roger, M. J. (ed.) Handbook of Plant Ecophysiology Techniques. Kluwer Academic Publishing. 452 pp.
 
 
Hussain, S., Luro, F., Costantino, G., Ollitrault, P., and Morillon, R. 2012. Physiological analysis of salt stress behaviour of citrus species and genera: low chloride accumulation as an indicator of salt tolerance. South African Journal of Botany 81: 103–112.
 
 
Munns, R. 2010. Approaches to identifying genes for salinity tolerance and the importance of timescale. Pp. 25-39. In: Sunkar, R. (ed.) Plant Stress Tolerance, Methods and Protocols. Springer Science & Bussines Media (Hummana Press).
 
 
Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681.
 
 
Nasir Khan, M., Siddiqui, M. H., Mohammad, F., Masroor, M., Khan, A., and Naeem, M. 2007. Salinity induced changes in growth, enzyme activities, photosynthesis, proline accumulation and yield in linseed genotypes. World Journal of Agricultural Sciences 3: 685-695.
 
 
Nieves, M., Garcia, A., and Cerda, A. 1991. Effect of salinity and rootstock on lemon fruit quality. The Journal of Horticultural Science and Biotechnology 66: 27-30.
 
 
Rafat, T. F. 2005. Identification and evaluation of citrus trees with significant genetic variation in the northern and southern gardens. Final report of the research project. Registered no. 84/487 dated 20 August 2005. Citrus and Subtropical Fruits Research Center.
 
 
Romero-Aranda, R., Moya, J. L., Tadeo, F. R., Legaz, F., Primo-Millo, E., and Talon, M. 1998. Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cations. Plant, Cell and Environment 21: 1243–1253.
 
 
Saleh, B., Allario, T., Dambier, D., Ollitrault, P., and Morillon, R. 2008. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Comptes Rendus Biologies 331: 703-710.
 
 
Sauls, J. P. 2008. Citrus nursery production, Texas citrus and subtropical fruits. Texas AgriLife Extension. Available at: http://aggiehorticulture.tamu.edu/citrus/nutrition/L2288.htm.
 
 
Simpson, C. R., Nelson, S. D., Melgar, J. C., Jifon, J., King, S. R., Schuster, G., and Voldera, A. 2014. Growth response of grafted and ungrafted citrus trees to saline irrigation. Scientia Horticulturae 169: 199-205.
 
 
Smith, P. F. 1962. A case of sodium toxicity in citrus. Proceedings of the Florida State Horticultural Society 75: 120-124.
 
 
Yesiloglu, T., Incesu, M., Yilmaz, B., Tuzcu, O., Uysal, M., and Cimen, B. 2012. Effect of salinity on some citrus rootstocks. Pp. 120-121. In: Proceedings of the XII International Citrus Congress.
 
 
Zekri, M. 1991. Effect of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Scientia Horticulturae 47: 303-15.
 
 
Zekri, M., and Parsons, L. R. 1992. Salinity tolerance of citrus rootstocks: effect of salt on root and leaf mineral concentrations. Plant Soil 147: 171-181.