تاثیر کمبود آب بر عملکرد دانه و تجمع عناصر غذایی معدنی در دانه ژنوتیپ‌های لوبیا

نویسندگان

1 استادیار، موسسه تحقیقات اصلاح و تهیه نهال و بذر

2 مؤسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشارزی، کرج، ایران

3 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان تهران، سازمان تحقیقات، آموزش و ترویج کشارزی، ورامین، ایران

چکیده

این پژوهش برای ارزیابی اثر کمبود آب بر عملکرد و تجمع برخی عناصر در دانه ژنوتیپ‌های لوبیا انجام شد. آزمایش مزرعه‌ای به‌صورت کرت‌های خردشده در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار در سال‌های 1388 و 1389 اجرا شد. تیمارهای آبیاری (آبیاری نرمال و کمبود آب) در کرت‌های اصلی و ژنوتیپ‌های لوبیا (KS31163، KS31164 و KS31170 از گروه قرمز؛ KS21478، KS21486 و KS21489 از گروه چیتی؛ KS41107 و KS41237 از گروه سفید) در کرت‌های فرعی قرار داشتند. عملکرد دانه و میزان تجمع نیتروژن، آهن، روی و فسفر در دانه‌های ژنوتیپ‌ها تعیین شد. نتایج نشان داد که عملکرد دانه و تجمع عناصر در دانه تحت تأثیر کمبود آب کاهش پیدا کرد. لوبیا قرمز KS31163 در هر دو شرایط آبیاری بیشترین عملکرد دانه را داشت. شدت تأثیر کمبود آب روی عناصر آهن و فسفر بیشتر از روی و نیتروژن بود. بیشترین کاهش مقدار آهن مربوط به ژنوتیپ KS31170 بود. از نظر آهن و نیتروژن موجود در دانه، لوبیاهای سفید در شرایط تنش آبی دارای مقادیر کمتری نسبت به انواع قرمز و چیتی بودند ولی فسفر بیشتری در این شرایط در دانه ذخیره کردند. در هر دو شرایط آبیاری، دانه‌های ژنوتیپ KS21478 بیشترین مقدار عنصر روی و ژنوتیپ KS41237 کمترین مقدار روی را داشتند. می‌توان نتیجه گرفت که کیفیت غذایی لوبیا به‌ویژه از نظر تجمع عناصر معدنی در دانه به‌طور قابل توجهی از شرایط محیطی تأثیر می‌پذیرد. بیشترین تأثیرپذیری از کمبود آب مربوط به تجمع عنصر آهن بود که میانگین تجمع آن در دانه بیش از 19 درصد کاهش نشان داد. در مجموع دو شرایط آبیاری، واحد تجمعی عناصر در دانه ژنوتیپ‌های KS31170، KS21478 و KS31163 نسبت به سایر ژنوتیپ‌ها بیشتر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Water Deficit on Seed Yield and Accumulation of Seed Minerals in Common Bean Genotypes

نویسندگان [English]

  • Ali Akbar Ghanbari 1
  • S. H. Mousavi 2
  • M. Taheri Mazandarani 3
1 Assistant Professor, Seed and Plant Improvement Institute
2 Horticultural Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
3 Instructor, Tehran Agricultural and Natural Resources Research and Education Center, AREEO, Varamin, Iran.
چکیده [English]

This research was conducted to evaluate the impact of field water deficit on quality and accumulation of some mineral nutrients in the bean seeds. Field experiment was carried out as split plot based on RCBD with four replications in Seed and Plant Improvement Institute, Karaj, Iran, in both normal irrigation and water deficit conditions as main plots and eight bean genotypes (red beans: KS31163, KS31164 and KS31170; white beans: KS41237, KS41107; Chitti beans: KS21478, KS21486 and KS21489) as sub plots, in 2009 and 2010 cropping seasons. Seed yield and accumulation of nitrogen, iron, zinc and phosphorus in the seeds were assessed. The results indicated that seed yield and minerals were reduced by water deficit. Genotype KS31163 had the highest seed yield under both irrigation conditions. The impact of drought on iron and phosphorus was more than on zinc and nitrogen. The highest Fe reduction was assessed in red bean genotype KS31170. The white beans showed lower levels of Fe and N in the seeds than red and Chitti beans under water deficit conditions, while stored more phosphorus amounts. In both conditions, KS21478 and KS41237 genotypes had the highest and the lowest amount of zinc, respectively. The greatest impact of water deficit was related to the iron accumulation in the seed, averaging more than 19 percent. Overall, water deficit decreased the concentration of mineral nutrients in the seeds. The cumulative amount of minerals in the seeds of KS31170, KS21478 and KS31163 were more than other genotypes under both irrigation conditions.

کلیدواژه‌ها [English]

  • Bean
  • Water deficit
  • Iron
  • nitrogen
  • Phosphorus
  • Zinc
Anonymous 2005. Official Methods of Analysis. 17th ed. Association of the Official Analytical Chemists, Guithersburg, Maryland, USA.
 
Beshir, H M., Bueckert, R., and Tar’an, B. 2016. Effect of temporary drought at different growth stages on snap bean pod quality and yield. African Crop Science Journal 24: 317-330.
 
Blair, M. W., Astudillo, C., and Beebe, S. 2005. Analysis of nutritional quality traits in an Andean recombinant inbred line population. Annual Reports in Bean Improvement Cooperative 48: 52-53.
 
Broughton, W. J., Hernandez, G., Blair, M., Beebe, S., Gepts, P., and Vanderleyden, J. 2003. Beans (Phaseolus spp.) - model food legumes. Plant and Soil 252: 55-128.
 
Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil 302: 1-17.
 
Castaneda-Saucedo, M. C., Cordova-Tellez, L., Gonzalez-Hernandez, V. A., Delgado-Alvarado, A., Santacruz-Varela, A., and Garcia-de los Santos, G. 2009. Physiological performance, yield, and quality of dry bean seeds under drought stress. Interciencia 34: 748-754.
 
Chaves, M. M., Maroco, J. P., and Pereira, J. S. 2003. Understanding plant responses to drought – from genes to the whole plant. Functional Plant Biology 30: 239-264.
 
Dubetz, S., and Bole, S. B. 1973. Effect of moisture stress at early heading and nitrogen fertilizer on three wheat cultivars. Canadian Journal of Plant Science 53: 1-5.
 
Fageria, N. K., Balligar, V. C., and Jones, C. A. 1997. Common bean and cowpea. pp. 441-489. In: Fageria, N.K., Balligar, V.C., and Jones, C. A. (eds). Growth and Mineral Nutrition of Field Crops. Marcel Dekker Inc., USA.
 
Fageria, N. K., and Santos, A. B. 2008. Yield physiology of dry bean. Journal of Plant Nutrition 31: 983-1004.
 
Gelin, J. R., Forster, S., Grafton, K. F., McClean, P. E., and Rojas-Cifuentes, G. A. 2007. Analysis of seed zinc and other minerals in a recombinant inbred population of Navy bean (Phaseolus vulgaris L.). Crop Science 47: 1361-1366.
 
Ghanbari, A. A., Mousavi, S.H., Mousapour Gorji, A., and Rao, I. 2013. Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turkish Journal of Field Crops 18: 73-77.
 
Ghasemian, V., Ghalavand, A., Soroosh Zadeh, A., and Pirzad, A. 2010. The effect of iron, zinc and manganese on quality and quantity of soybean seed. Journal of Phytology 2: 73-79.
 
Graham, R., Senadhira, D., Beebe, S., Iglesias, C., and Monasterio, I. 1999. Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches. Field Crops Research 60: 57-80.
 
Grusak, M. A. 2002. Enhancing mineral content in plant food products. Journal of American College Nutrition 21: 178-183.
 
Gunes, A., Inal, A., and Adak, M. S. 2007. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture. Nutrient Cycling in Agroecosystems 78: 83-96.
 
Gutierrez-Rodriguez, M., Escalante-Estrada, J. A., Gonzalez, M. T. R., and Reynolds, M. P. 2006. Canopy reflectance indices and its relationship with yield in common bean plants (Phaseolus vulgaris L.) with phosphorous supply. International Journal of Agricultural Biology 8: 203-207.
 
Khan, H. R., McDonald, G. K., and Rengel, Z. 2003. Zinc fertilization improves water use efficiency, grain yield and seed Zn content in chickpea. Plant and Soil 249: 389-400.
 
Kigel, J. 1999. Culinary and nutritional quality of Phaseolus vulgaris seeds as affected by environmental factors. Biotechnologie Agronomie Societe et Environnement 3: 205-209.
 
Long, J. K., Banziger, M., and Smith, M. E. 2004. Diallel analysis of grain iron and zinc density in southern African-adapted maize inbreds. Crop Science 44: 2019-2026.
 
Majnoon Hosseini, N. 2008. Grain Legume Production. University of Tehran, Press, Tehran, Iran (in Persian).
 
Martinez-Ballesta, M. C., Dominguez-Perles, R., Moreno, D. A., Muries, B., Alcaraz-Lopez, C., Bastias, E., Garcia-Viguera, C., and Carvajal, M. 2010. Minerals in plant food: effect of agricultural practices and role in human health. A review. Agronomy for Sustainable Development 30: 295-309.
 
Mouatt, M. C. H., and Nes, P. 1986. Influence of soil water content on the supply of phosphate to plants. Australian Journal of Soil Research 24: 435-440.
 
Munoz-Perea, C. G., Allen, R. G., Westermann, D. T., Wright, J. L., and Singh, S. P. 2007. Water use efficiency among dry bean landraces and cultivars in drought-stressed and non-stressed environments. Euphytica 155: 393-402.
 
Munoz-Perea, C. G., Allen, R. G., Wright, J., Westermann, D., Teran, H., Dennis, M., and Singh, S. P. 2005. Drought resistance, water use efficiency and nutrient uptake by old and new dry bean cultivars. Annual Reports in Bean Improvement Cooperative 48: 144-145.
 
Munoz-Perea, C. G., Teran, H., Allen, R.G., Wright, J. L., Westermann, D. T., and Singh, S. P. 2006. Selection for drought resistance in dry bean landraces and cultivars. Crop Science 46: 2111-2120.
 
Nunez Barrios, A., Hoogenboom, G., and Nesmith, D.S. 2005. Drought stress and distribution of vegetative and reproductive traits of a bean cultivar. Scientia Agricola 62: 18-22.
 
Polania, J. A., Grajales, M., Cajiao, C., Garcia, G., Ricaurte, J., Beebe, S., and Rao, I. 2008. Physiological evaluation of drought resistance in elite lines of common bean (Phaseolus vulgaris L.) under field conditions. CIAT, Cali, Colombia.
 
Prasad, P. V. V., Staggenborg, S. A., and Ristic, Z. 2008. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. pp. 301-355. In: Segoe, S. (ed.). Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes. ASA, CSSA, SSSA, Madison, USA.
 
Ramirez-Vallejo, P., and Kelly, J. D. 1998. Traits related to drought resistance in common bean. Euphytica 99: 127-136.
 
Ramos, M. L. G., Gordon, A. J., Minchin, F. R., Sprent, J. I., and Parsons, R. 1999. Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Annals of Botany 83: 57-63.
 
Rao, I. M. 2001. Role of physiology in improving crop adaptation to abiotic stresses in the tropics: The case of common bean and tropical forages. pp. 583-613. In: Pessarakli, M. (ed.). Handbook of Plant and Crop Physiology. Marcel Dekker Inc., USA.
 
Reinprecht, Y., Engelken, J., Michaels, T. E., and Pauls, K. P. 2004. Cloning genes for secondary metabolites that affect seed colour, plant defense, nodulation and human health in beans. Annual Reports in Bean Improvement Cooperative 47: 77-78.
 
Reynoso-Camacho, R., Ramos-Gomez, M., and Loarca-Pina, G. 2006. Bioactive components in common bean (Phaseolus vulgaris L.). Advances in Agricultural and Food Biotechnology 37: 217-236.
 
Ronaghy, H. A. 1987. The role of zinc in human nutrition. World Review of Nutrition and Dietetics 54: 237-254.
 
Rosado, J. L., Lopez, P., Morales, M., Munoz, E., and Allen, L. H. 2007. Bioavailability of energy, nitrogen, fat, zinc, iron and calcium from rural and urban Mexican diets. Nutrition 68: 45-58.
 
Santalla, M., de Ron, A. M., and Casquero, P. A. 1995. Nutritional and culinary quality of bush bean populations intercropped with maize. Euphytica 84: 57-65.
 
Santos, M. G., Ribeiro, R. V., de Oliveira, R. F., and Pimentel, C. 2004. Gas exchange and yield response to foliar phosphorus application in Phaseolus vulgaris L. under drought. Brazilan Journal of Plant Physiology 16: 171-179.
 
Seenaiah, R., Madhu Babu, T., Akbar Basha, P., Srihari, A., Suvarna, J., Sankar Babu, M. V., and Thimma Naik, S. 2015. Studies on morphological and physiological traits on mineral composition in cluster bean genotypes under drought stress. International Journal of Plant, Animal and Environmental Sciences 5: 250-256.
 
Serraj, R., and Sinclair, T. R. 1998. N2 fixation response to drought in common bean (Phaseolus vulgaris L.). Annals of Botany 82: 229-234.
 
Sharma, S. S., and Dietz, K. J. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57: 711-726.
 
Singh, S. P. 2007. Drought resistance in the race Durango dry bean landraces and cultivars. Agronomy Journal 99: 1219-1225.
 
Thomas, J. M. G., Boote, K. J., Allen Jr, L. H., Gallo-Meagher, M., and Davis, J. M. 2003. Elevated temperature and carbon dioxide effects of soybean seed composition and transcript abundance. Crop Science 43: 1548-1557.
 
Thomas, J. M. G., Prasad, P. V. V., Boote, K. J., and Allen, L. H. 2009. Seed composition, seedling emergence and early seedling vigor of red kidney bean seed produced at elevated temperature and carbon dioxide. Journal of Agronomy and Crop Science 195: 148-156.
 
Urrea, C. A., Yonts, C. D., Lyon, D. J., and Koehler, A. E. 2009. Selection for drought tolerance in dry bean derived from the Mesoamerican gene pool in Western Nebraska. Crop Science 49: 1-6.
 
Welch, R. M. 2001. Micronutrients, agriculture, and nutrition: Linkages for improved health and well-being. pp. 247-289. In: Singh, K., Mori, S., and Welch, R.M. (eds.). Perspectives on the Micronutrient Nutrition of Crops. Scientific Publishers, Jodhpur, India.
 
Welch, R. M., and Graham, R. D. 1999. A new paradigm for world agriculture: Meeting human needs, productive, sustainable, and nutritious. Field Crops Research 60: 1-10.