اثر نمک‌های نیترات‌آمونیوم و کلرورکلسیم در پرآوری و بهبود کیفیت شاخساره‌‌های درون شیشه پایه‌های پررشد گلابی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ایلام

2 پژوهشکده میوه‌های معتدله و سردسیری، مؤسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشارزی، کرج، ایران

3 دانشکده علوم و مهندسی کشاورزی دانشگاه تهران، کرج

چکیده

تولید شاخه‌چه‌های کوچک و پرآوری پائین آن‌ها در شرایط درون شیشه است. به منظور بهبود کیفیت شاخه‌چه‌های درون شیشه، اثر نمک‌های نیترات‌آمونیوم و کلرورکلسیم روی پایه‌های گلابی Q1 (Pyrus communis×P. ussuriensis Rehd.)، P. betulifolia و پایه بومی کنجونی (P. communis×P. ussuriensis Rehd.) در کنار شاهد دانهال درگزی در محیط گزینش شده QL مورد تحقیق قرار گرفت. نمک نیترات‌آمونیوم در غلظت‌های 25/6 (شاهد محیط QL)، 5/12 و 75/18 میلی‌مولار و کلرورکلسیم در غلظت‌های صفر (شاهد محیط QL)، 9/0 و 8/1 میلی‌مولار بر میزان پرآوری، کیفیت شاخه‌چه‌ها و جذب عناصر نیتروژن و کلسیم در پایه‌های فوق بررسی شد. در اکثر محیط‌ها، پایه P. betulifolia دارای رشد زیاد و پرآوری کم بود و پایه Q1 پرآوری نسبتاً بالاتری در مقایسه با دیگر پایه‌ها داشت. افزایش مقدار نیترات‌آمونیوم سبب کاهش در پرآوری ریزنمونه‌ها شد و با افزایش مقدار کلرورکلسیم، سطح برگ توسعه یافت. مقدار جذب عناصر نیتروژن و کلسیم در همه پایه‌ها بالاتر از مقدار بحرانی بود و افزایش نمک نیترات‌آمونیوم سبب افزایش سطح جذب نیتروژن برای پایه P. betulifolia، Q1، کنجونی و دانهال درگزی به ترتیب به میزان 58/7، 31/4، 78/5 و 24/6 درصد شد. برعکس بالاترین درصد کلسیم جذب شده برای سه پایه P. betulifolia، Q1 و پایه کنجونی در پائین‌ترین غلظت کلرورکلسیم مشاهده شد. وجود بالاترین سطح کلسیم در بیش‌تر پایه‌ها در کم‌ترین سطح نیترات آمونیوم نشان دهنده تاثیر منفی این نمک در جذب کلسیم در این شرایط بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Ammonium Nitrate and Calcium Chloride Salts on Proliferation and Improvement of In Vitro Shootlets Quality of Vigorous Pear Rootstocks

نویسندگان [English]

  • M. Mansouryar 1
  • H. Abdollahi 2
  • J. Erfani Moghaddam 1
  • M. Mirabdolbaghi 2
  • S. A. Salami 3
1 Department of Horticultural Science, College of Agriculture, Ilam University, Ilam, Iran.
2 Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
3 Department of Horticultural Science, College of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
چکیده [English]

The clonal propagation of vigorous pear rootstocks is possible by micropropagation, but in this condition many of them demonstrate low proliferation rate and produce short in vitro shootlets. To improve quality of in vitro shootlets, the effects of NH4NO3 and CaCl2, were investigated in pear rootstocks, Q1 (Pyrus communis L.), P. betulifolia, Konjuni (P. communis×P. ussuriensis Rehd.) and Dargazi seedling as control on QL medium. This objective was followed by adding NH4NO3 in 6.25 (control QL medium), 12.5 and 18.75 mM, and CaCl2 in 0 (control QL medium), 0.9 and 1.8 mM and evaluation of proliferation, shootlets quality and percentage of N and Ca absorption by shootlets. P. betulifolia normally expressed high growth and low proliferation, while Q1 had moderately higher proliferation in comparison with other rootstocks. Increasing of NH4NO3 reduced the proliferation but CaCl2 increasing improved the leaf expansion. N and Ca absorption in all rootstocks were higher than threshold levels of these elements in this species and NH4NO3 addition increased N absorption for P. betulifolia, Q1, Konjuni and Dargazi seedling to 7.58, 4.31, 5.78 and 6.24%, respectively. Contrarily to N absorption, the highest Ca absorption was observed for three rootstock, P. betulifolia, Q1 and Konjuni in lowest CaCl2 concentration. The presence of highest Ca contents in the lowest NH4NO3 concentration shows the negative effects of this salt on Ca absorption in pear rootstocks.

کلیدواژه‌ها [English]

  • Pear
  • Tissue culture
  • Pyrus betulifolia
  • Konjuni
  • Dargazi seedling
  • Q1 rootstock
Abdollahi, H., 2010. Pear, Botany, Cultivars and Rootstocks. Iranian Agricultural Ministry Publications, Tehran, Iran, 210pp. (in Persian).
 
Abdollahi, H., Atashkar, D., and Alizadeh, A. 2012. Comparison of dwarfing effects of two hawthorn and quince rootstocks on several commercial pear cultivars. Iranian Journal of Horticultural Science 43: 53-63. (in Persian).
 
Abdollahi, H., Muleo, R., and Rugini, E. 2005. Study of basal growth media, growth regulators and pectin effects on micropropagation of pear (Pyrus communis L.) cultivars. Seed and Plant 21: 373-384 (in Persian).
 
Abdollahi, H., Muleo, R., and Rugini, E. 2006. Optimization of regeneration and maintenance of morphogenic callus in pear (Pyrus communis L.) by simple and double regeneration techniques. Scientia Horticulturae 108: 352-358.
 
Abu-Qaoud, H., Skirvin, R. M., and Below, F. M. 1991. Influence of nitrogen form and NH 4-N/:NO -N ratios on adventitious shoot formation from pear (Pyrus communis L.) leaf explants in vitro. Plant Cell, Tissue and Organ Culture 27: 315_319.
 
Alarcon, A. L., Madrid, R., Egea, C., and Guillen, I. 1999. Calcium deficiency provoked by the application of different forms and concentrations of Ca2+ to soilless cultivated muskmelons. Scientia Horticulturae 81: 89-102.
 
Babaei, F., Abdollahi, H., and Khorramdel Azad, M. 2011. Detection of pear S-alleles by setting up a revised identified systems. Acta Horticulturae 976: 339-343.
 
Berardi, G., Infante, R., and Neri, D. 1993. Micropropagation of Pyrus calleryana Decne. from seedlings. Scientia Horticulturea 53: 157-165.
 
Campbell, J. 2003. Pear Rootstocks. AGFACTS, the State of New South Wales Agriculture, Australia. 13pp.
 
Chevreau, E., Thibault, B., and Arnaud, Y. 1992. Micropropagation of pear (Pyrus communis L.). pp. 244-261.In: Bajaj, Y.P.S. (ed.) Biotechnology in Agriculture and Forestry, Vol. 18. High-Tech and Micropropagation II. Springer-Verlag, Berlin, Heidelberg, Germany.
 
Depaoli, G., Rossi, V., and Scozzoli, A. 1994. Micropropagation delle Piante Ortoflotofrutticole. Edagricole, Bologna, Italy, 450pp. (In Italian).
 
Erfani, J., Ebadi, A., Abdollahi, H., and Fatahi Moghadam, M. R. 2012. Genetic diversity of some pear cultivars and genotypes using simple sequence repeat (SSR) markers. Plant Molecular Biology Reporter 30: 1065-1072.
 
Fischer, M. 2009. Pear breeding. pp. 135-160. In: Jain, S. M., and Priyadarshan, P. M. (eds.) Breeding Plantation Tree Crops: Temperate Species. Springer Press, Germany.
 
Hagin, J., and Tucker, B. 1982. Fertilization of Dryland and Irrigated Soils. Springer-Verlag, New York, USA. 186 pp.
 
Hancock, J. F., and Lobos, G. A. 2008. Pears. pp. 299-335. In: Hancock, J. F. (ed.) Temperate Fruit Crop Breeding, Germplasm to Genomics. Springer Science Press, USA.
 
Kadota, M., and Niimi, Y. 2003. Effects of cytokinin types and their concentration on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell, Tissue Organ Culture 72: 261-265.
 
Khodaee Chegenee, F., Abdollahi, H., Ershadee, A., and Esna Ashari, M. 2011. Determination of micro-propagation protocol for OH×F333 and OH×F69 pear clonal rootstocks. Seed and Plant Production Journal 27-2: 297-312 (in Persian).
 
Khosravinezhad, F., Abdollahi, H., Kashefi, B., Hassani, M., and Salehi, Z. 2016. Study on in vitro propagation of some promising quince (Cydonia oblonga) cultivars. Iranian Journal of Horticultural Science 47: 135-144 (in Persian).
 
Leblay, C., Chevreau, E., and Robin, L. M. 1991. Adventitious shoot regeneration fromin vitro leaves of several pear cultivars (Pyrus communis L.). Plant Cell, Tissue and Organ Culture 25: 99–105.
 
Mansouryar, M., Erfani-Moghadam, J., Abdollahi, H., and Salami, S. A. 2016. Optimization of in vitro micropropagation protocol for some vigorous rootstocks of pear. Iranian Journal of Horticultural Science 47: 361-370.
 
Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, London, UK. 651pp. Murashige, T., and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.
 
Nikzad Gharehaghaji, A., Abdollahi, H., Arzani, K., Shojaeiyan, A., Padasht, M. N., Dondini, L., and De Franceschi, P. 2014. Contribution of western and eastern species to the Iranian pear germplasm revealed by the characterization of s-genotypes. Acta Horticulturae 1032: 159-167.
 
Nourmohammadi, N., Abdollahi, H., Moeini, A., and Roohalamin, E. 2015. Effects of growth media and Fe source on micropropagation and rooting of semi-dwarf pear rootstocks, Pyrodwarf and OH×F87. Seed and Plant Improvement Journal 31-1: 265-278 (in Persian).
 
Quoirin, M., and Lepoivre, P. 1977. Improved medium for in vitro culture of Prunus sp. Acta Horticulturae 78: 437-442.
 
Shibli, R. A., Ajlouni, M. M., Jaradat, A., Aljanabi, S., and Shatnawi, M. 1997. Micropropagation in wild pear (Pyrus syriaca). Scientia Horticulturae 68: 237-242.
 
Wada, S., Maki, S., Niedz, R. P., and Reed, B. M. 2015a. Screening genetically diverse pear species for in vitro CaCl2, MgSO4 and KH2PO4 requirements. Acta Physiologia Plantarum 37: 1-10.
 
 
Wada, S., Niedz, R. P., and Reed, B. M. 2015b. Determining nitrate and ammonium requirements for optimal in vitro response of diverse pear species. In Vitro Cell & Developmental Biology in Plant 51: 19-27.